[1]熊齐,李尊朝,焦琛,等.采用峰值电感电流控制的直流-直流电压转换器[J].西安交通大学学报,2018,52(12):128-136.[doi:10.7652/xjtuxb201812019]
 XIONG Qi,LI Zunchao,JIAO Chen,et al.A DCDC Converter Based on InductorPeakCurrent Control[J].Journal of Xi'an Jiaotong University,2018,52(12):128-136.[doi:10.7652/xjtuxb201812019]
点击复制

采用峰值电感电流控制的直流-直流电压转换器
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
52
期数:
2018年第12期
页码:
128-136
栏目:
出版日期:
2018-12-10

文章信息/Info

Title:
A DCDC Converter Based on InductorPeakCurrent Control
文章编号:
0253-987X(2018)12-0128-09
作者:
熊齐李尊朝焦琛周律忱
西安交通大学微电子学院,710049,西安
Author(s):
XIONG QiLI ZunchaoJIAO ChenZHOU Lüchen
School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
升压降压型转换器单电感多输入多输出峰值电感电流脉冲频率调制
Keywords:
buckboost converter singleinductor multiinputmultioutput inductorpeakcurrent pulsefrequency modulation
分类号:
TN386.6
DOI:
10.7652/xjtuxb201812019
文献标志码:
A
摘要:
针对可穿戴设备需要小型化和适应各种应用场景要求的问题,提出了一种单电感多输入多输出的升压降压型DCDC转换器,以采集多种能量为可穿戴设备供电。由于转换器既需要高的效率,又需要稳定的负载电压,提出了结合峰值电感电流控制策略和基于阈值变频策略的峰值电感电流脉冲频率调制技术。峰值电感电流脉冲频率调制技术根据各输入输出端口状态来改变能量传输频率,从而实现各能量源最大功率点追踪和负载端电压的调制;同时,通过控制每次能量传递时流过电感的峰值电流大小,提高转换效率并降低输出电压纹波。此外,采用两种低功耗控制策略以降低控制电路功耗:使用低供电电压为控制电路供电;令部分控制电路断续工作。采用华润上华CMOS 0.18 μm工艺完成了转换器电路及版图设计,并进行了仿真验证。后仿真结果表明,在0.2~3 V输入电压范围和0.001~3 mW负载范围内,转换器效率能够保持在73.8%以上,控制电路功耗小于300 nW。
Abstract:
A singleinductor multiinputmultioutput buckboost DCDC converter is designed for multisource energy harvesting according to wearable devices’ demand for miniaturization and adaption to different environments. To achieve high efficiency and stable voltage for the load, inductorpeakcurrent pulsefrequency modulation technology is proposed to control the converter via combining inductorpeakcurrent control (IPCC) strategy and the thresholdbased variablefrequency (TBVF) strategy. The inductorpeakcurrent pulsefrequency modulation technology changes the frequency of the energy transformation according to the states of inputs and outputs to implement the maximum power point tracking and to regulate the output voltage. At the same time, it controls the peak current of the inductor to improve the efficiency and to decrease the output voltage ripple. Furthermore, two kinds of low power control strategies are implemented to reduce the power consumption of the control circuits: adopting low voltage control circuit and discontinuously working circuit modules. Finally, the converter circuit and layout are designed and verified in the CSMC 0.18 μm process. Simulation results after layout parasitic extraction show that the efficiency of the converter is above 73.8% under the input voltage from 0.2 V to 3 V with load varying from 0.001 to 3 mW and the power consumption of control circuits is less than 300 nW.

参考文献/References:

[1]WANG Chuang, LI Zunchao, LUO Cheng, et al. An optimized autotuning digital DCDC converter based on linearnonlinear and predictive PID [J]. IEICE Transactions on Electronics, 2014, 97(8): 813819.
[2]赵凯, 王闯, 李尊朝, 等. 结合平衡和滤波技术抑制GaN电源转换器的电磁干扰 [J]. 西安交通大学学报, 2016, 50(2): 3842.
ZHAO Kai, WANG Chuang, LI Zunchao, et al. A method for suppressing electromagnetic interference of GaN converter utilizing balance and filter technologies [J]. Journal of Xi’an Jiaotong University, 2016, 50(2): 3842.
[3]WANG Chuang, ZHAO Kai, LI Zunchao. An inductorbased converter with EMI reduction for lowvoltage thermoelectric energy harvesting [J]. International Journal of Electronics, 2017, 104(7): 11321141.
[4]荣训, 陈志敏, 曹广忠. 微弱能量收集电路技术的研究现状与发展趋势 [J]. 传感器与微系统, 2015, 34(9): 610.
RONG Xun, CHEN Zhimin, CAO Guangzhong. Research status and developing trend of ultra low energy harvesting circuit technology [J]. Transducer and Microsystem Technologies, 2015, 34(9): 610.
[5]WANG Chuang, LI Zunchao, ZHAO Kai, et al. Efficient selfpowered convertor with digitally controlled oscillatorbased adaptive maximum power point tracking and RF kickstart for ultralowvoltage thermoelectric energy harvesting [J]. IET Circuits, Devices & Systems, 2016, 10(2): 147155.
[6]KIM H, KIM S, KWON C K, et al. An energyefficient fast maximum power point tracking circuit in an 800 μW photovoltaic energy harvester [J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2927 2935.
[7]SHIM M, KIM J, JEONG J, et al. Selfpowered 30 μW to 10 mW piezoelectric energy harvesting system with 909 ms/V maximum power point tracking time [J]. IEEE Journal of SolidState Circuits, 2015, 50(10): 23672379.
[8]CHOWDARY G, SINGH A, CHATTERJEE S. An 18nA, 87% efficient solar, vibration and RF energyharvesting power management system with a single shared inductor [J]. IEEE Journal of SolidState Circuits, 2016, 51(10): 25012513.
[9]BANDYOPADHYAY S, CHANDRAKASAN A P. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor [J]. IEEE Journal of SolidState Circuits, 2012, 47(9): 21992215.
[10]YU G, CHEW K W, SUN Z C, et al. A 400 nW singleinductor dualinputtrioutput DCDC buckboost converter with maximum power point tracking for indoor photovoltaic energy harvesting [J]. IEEE Journal of SolidState Circuits, 2015, 50(11): 27582772.
[11]SHRIVASTAVA A, ROBERTS N E, KHAN O U. et al. A 10 mVinput boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220 mV coldstart and 145 dBm, 915 MHz RF kickstart [J]. IEEE Journal of SolidState Circuits, 2015, 50(8): 18201832.
[12]ZHANG Yi, MA Dongsheng. A fastresponse hybrid SIMO power converter with adaptive current compensation and minimized crossregulation [J]. IEEE Journal of SolidState Circuits, 2014, 49(5): 12421255.
[13]PRABHA R D, GABRIEL A. 018 μm Lightharvesting batteryassisted chargersupply CMOS system [J]. IEEE Transactions on Power Electronics, 2015, 31(4): 29502958.
[14]CHEN P H, FAN M Y. An 834% peak efficiency singleinductor multipleoutput based adaptive gate biasing DCDC converter for thermoelectric energy harvesting [J]. IEEE Transactions on Circuits and Systems: Ⅰ, 2015, 62(2): 405412.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(61176038);陕西省工业科技攻关计划资助项目(2016GY-075)
更新日期/Last Update: